Test models for improving filtering with model errors through stochastic parameter estimation

نویسندگان

  • Boris Gershgorin
  • John Harlim
  • Andrew J. Majda
چکیده

The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent testmodels for filteringwith stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors. 2009 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filtering skill for turbulent signals for a suite of nonlinear and linear extended Kalman filters

The filtering skill for turbulent signals from nature is often limited by errors due to utilizing an imperfect forecast model. In particular, real-time filtering and prediction when very limited or no a posteriori analysis is possible (e.g. spread of pollutants, storm surges, tsunami detection, etc.) introduces a number of additional challenges to the problem. Here, a suite of filters implement...

متن کامل

Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation

The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. Th...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

Hydrological Drought Forecasting Using Stochastic Models (Case Study: Karkheh watershed Basin)

Hydrological drought refers to a persistently low discharge and volume of water in streams and reservoirs, lasting months or years. Hydrological drought is a natural phenomenon, but it may be exacerbated by human activities. Hydrological droughts are usually related to meteorological droughts, and their recurrence interval varies accordingly. This study pursues to identify a stochastic model (o...

متن کامل

Behavioral study of piston manufacturing plant through stochastic models

Piston plays a vital role in almost all types of vehicles. The present study discusses the behavioral study of a piston manufacturing plant. Manufacturing plants are complex repairable systems and therefore, it is difficult to evaluate the performance of a piston manufacturing plant using stochastic models. The stochastic model is an efficient performance evaluator for repairable systems. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 229  شماره 

صفحات  -

تاریخ انتشار 2010